Жидкая штамповка алюминия

ЛИТЬЕ С КРИСТАЛЛИЗАЦИЕЙ ПОД ДАВЛЕНИЕМ (ЖИДКАЯ ШТАМПОВКА)

Процесс литья с кристаллизацией под давлением (жидкая штамповка) заключается в том, что расплав ковшом или заливочным устройством заливают в матрицу пресс-формы, затем пуансоном осуществляют окончательное оформление контуров отливки и последующее ее уплотнение с выдержкой под давлением до окончания затвердевания (рис. 28.1). После извлечения из пресс-формы отливку можно подвергать различным видам последующей обработки (термической, механической и т.д.).

Подготовка пресс-форм заключается в установке и закреплении матрицы на столе пресса, а пуансона — на подвижной его траверсе, нагреве пресс- формы до рабочей температуры (150—250°С), смазке и окраске рабочих поверхностей. В отличие от обычных кокилей и пресс-форм литья под давлением заливку расплава проводят в открытую матрицу. После заливки сплава опускается пуансон, осуществляется окончательное формообразование отливки и выдержка ее под заданным давлением до окончания затвердевания. Матрица перекрывается пуансоном после заливки расплава, когда траверса пресса перемещается вниз.

Время до приложения давления к расплаву должно быть минимальным. Оно зависит от усилия гидравлического пресса, массы залитого расплава, времени опускания пуансона, конфигурации и толщины стенки отливки.

Рис. 28.1. Схемы литья с кристаллизацией под давлением:

а — в — пуансонное прессование — заливка расплава в матрицу; б — формообразование и уплотнение затвердевающей отливки; в — извлечение отливки из формы); г — поршневое прессование; 1 — матрица; 2 — расплав; 3 — заливочный ковш; 4 — пуансон;

Способом литья с кристаллизацией под давлением изготавливают простые и сложные по конфигурации отливки из цветных сплавов на основе алюминия, магния, меди, цинка и других металлов, как литейных, так и деформируемых. Процесс осуществляется па специализированных и неспециализированных гидравлических прессах и машинах со скоростью холостого хода ползуна не менее 100 мм/с.

Литье с кристаллизацией под давлением рекомендуется использовать для изготовления следующих отливок: с повышенной плотностью, а также для художественных отливок сложного профиля. В последнем случае формообразующая часть матрицы выполняется одноразовыми вкладышами.

В отличие от отливок, изготовленных литьем под давлением, отливки, изготовленные литьем с кристаллизацией под давлением, можно подвергать термической обработке, что позволяет существенно повысить механические и служебные свойства отливок и деталей.

В результате воздействия давления на кристаллизующийся сплав в отливках происходят структурные изменения (измельчение структуры, изменение состава и характера распределения фаз), повышение однородности в результате уменьшения степени развития ликвационных процессов, равномерное распределение неметаллических включений и, как следствие, повышение физико-механических показателей. При этом (по сравнению с другими способами литья) достигается повышение прочностных показателей отливок на 15—30% и пластических — в 2—4 раза.

Применяют несколько схем процесса. На рис. 28.1 представлены две схемы прессования.

При пуансонном прессовании (рис. 28.1, а —в) под действием выступающей части пуансона незатвердевший сплав выдавливается вверх до полного заполнения рабочей полости формы, оформляемой матрицей и пуансоном, после чего отливка выдерживается под давлением до окончания затвердевания.

При поршневом прессовании (рис. 28.1, г) давление кристаллизующемуся расплаву передается пуансоном, перекрывающим открытую полость матрицы и действующим на верхний торец формирующейся отливки в течение времени, необходимого для ее затвердевания.

Литьем с кристаллизацией под давлением можно изготавливать отливки с толщиной стенки 2—100 мм, а также слитки диаметром 30—600 мм. Для этого процесса предпочтительными являются такие отливки, для которых могут быть использованы пресс-формы с неразъемной матрицей. Поэтому на наружных боковых поверхностях отливок не должно быть выступов и поднутрений, препятствующих извлечению их из матрицы.

Литьем с кристаллизацией под давлением можно изготавливать проволоку из алюминиевых сплавов. На рис. 28.2 приведена схема пресс-формы для изготовления проволоки с помощью воздействия пуансона на расплав.

Перед заливкой расплав перегревают на 50—70°С и заливают в форму, снижая до минимума выдержку его в форме до начала приложения давления до 3 с. Температуру формы поддерживают на уровне 20—70°С. Давление прессования — 300—400 МПа.

После заливки расплава на боковой поверхности пресс-формы формируется тонкая корка из затвердевшего металла, достаточная для того, чтобы

Рис. 28.2. Схема пресс-формы для изготовления проволоки прессованием при кристаллизации в начале (а) и в конце (б) прессования:

1 — пуансон; 2 — матрица; 3 — расплав; 4 — проволока; 5 — калиброванное отверстие; 6 — толкатель; 7 — отливка (пресс-остаток)

после приложения давления она «нарушалась» и расплав поступал в специально выполненное в матрице калиброванное отверстие 5 (см. рис. 28.2). Следует отметить, что на входе в отверстие корка имеет толщину меньше по сравнению с близлежащими слоями, так как она практически не соприкасается с формой. Перед началом прессования гидростатического напора расплава, залитого в форму, недостаточно для прорыва корки и истечения металла в отверстие. После приложения давления прочность корки нарушается, и металл выдавливается через отверстие в матрице, размер которого на входе составляет 0,5 мм. Истечение металла из отверстия продолжается до момента перекрытия нижней частью пуансона 1 входа в отверстие 5 или образования плотной корки металла на его входе. В конце прессования остается пресс-остаток, который может служить заготовкой для определенной детали 7, который выталкивается из пресс-формы толкателями 6.

Для изготовления художественных сложнопрофильных отливок применяется литье с кристаллизацией под давлением методом выдавливания жидкого расплава в закрытые полости (рис. 28.3). Указанный процесс осу-

Рис. 28.3. Схема выдавливания расплава в закрытые полости:

а — до соприкосновения с пуансоном; б — выдержка под давлением; 1 — пуансон; 2 — матрица; 3 — расплав; 4 — затвердевшая корка; 5 — отливка; 6 — питатель; 7 — пресс-остаток; 8 — разовый вкладыш; 9 — выталкиватель ществляется в комбинированные формы на гидравлических прессах с малым усилием прессования и нижней подачей матрицы в верхнюю полость рабочего окна. При этом способе заливка проводится в матрицу, из которой сплав пуансоном вытесняется в рабочие полости.

До приложения давления не происходит даже частичного оформления отливки (см. рис. 28.3, а). Под давлением пуансона расплав но питателям, расположенным в прорезях пуансона, непосредственно из мсталлоирием- ника перетекает в рабочие полости пресс-формы и уплотняется (см. рис. 28.3, 6). Давление затвердевающей отливке передается через незатвердевшие участки питателей. При определенном соотношении площадей сечений питателя и отливки затвердевание может происходить как при минимальном давлении, так и при атмосферном. При этом формообразующие элементы можно изготавливать из гипса, керамики, полученной Шоу-процессом, а в ряде случаев применяют вставки из песка с нульвербакелитом.

При указанной технологии художественные отливки получаются плотные с высокой чистотой поверхности и хорошо извлекаются из пресс-формы.

Серийная штамповка алюминия в кратчайшие сроки

Для просмотра видео требуется современный браузер с поддержкой видео HTML5.

Серийная штамповка алюминия в кратчайшие сроки

Листовая штамповка алюминия и других металлов

Профессиональная станочная штамповка листовых заготовок — довольно молодая технология: первые ее успешные опыты относятся к 90-м годам ХIХ века. Однако развивалась она очень быстро: уже через каких-то 20 лет единичные операции на разрозненном оборудовании начали уступать место работе на сборочных линиях. А в 20-е годы ХХ столетия были опробованы и успешно внедрены в производство методики антикоррозионной защиты штампованных изделий.

Современная штамповка алюминия листового выполняется на высокотехнологичных штамповочных прессах. Выбор технологии обработки листов зависит от их толщины.

Горячая объемная штамповка алюминиевых сплавов

Тем не менее, возможности даже очень мощного оборудования небезграничны. И если металл толщиной до 10 мм оно сможет деформировать без какого-либо ущерба для заготовок, более толстые листы перед штамповкой необходимо нагревать. Такая технология называется горячей.

Горячая штамповка алюминия используется не менее часто, чем для стали. Во-первых, потому что в зависимости от вхождения других элементов пластические свойства металла могут увеличиваться или уменьшаться. Во-вторых, при работе с листовым прокатом большой толщины без нагрева можно испортить даже самый гибкий лист.

Для получения объемных изделий нагрев перед штамповкой не просто желателен, а обязателен, так как деформация получается значительной. Металл во время процесса не просто гнется, но и вытягивается в различных направлениях, а при этом неизбежно меняется его первичная толщина.

Холодная штамповка алюминия

Холодной штамповке из алюминия заготовки подвергаются без нагрева. И тонколистовой металл на “отлично” выдерживает испытание на гибкость, которое готовят для него два основных участника процесса — неподвижная матрица и подвижный пуансон.

Под этим видом обработки понимается не одна операция, а целый комплекс действий, которые можно условно определить как разделяющие и формоизменяющие. При разделяющих воздействиях заготовка меняет форму благодаря резке, вырубке, пробивке и прочим способам отделить часть от целого.

Резка выполняется на различном оборудовании: от механических ножниц до лазерного станка. Линия реза заготовки может быть как прямой, так и фигурной. Инструментом для пробивки становится пробивной пресс. После его прохождения на будущей детали появляются отверстия. Вырубка используется для получения заготовок со сформированным замкнутым контуром.

Намного более разнообразны формообразующие операции холодной штамповки алюминия. К ним относятся:

  • гибка,
  • скручивание,
  • вытяжка,
  • рельефная формовка,
  • обжим и пр.

Цена штамповки металла

Типовые поковки, изготавливаемые
горячей объемной штамповкой

Штамповка деталей и изготовление штампов

Мы не упомянули о главном “действующем лице” штамповки из алюминия помимо станков. Это, конечно же, штампы — детали, придающие безликой заготовке необходимую форму. Они являются функциональными органами любого прессового станка. По сути, штампы — расходные материалы, которые со временем изнашиваются. Но перед тем как отправиться на переплавку, они способны выполнить тысячи однотипных действий.

Изготовление штампов для кузнечно-штамповочных производств — самостоятельная отрасль металлообработки. Передовые предприятия, в том числе и наш цех, готовы предложить заказчику выпуск не только типовых деталей, но и уникальных, созданных по индивидуальному проекту.

Холодная технология штамповки листового металла:
очевидные преимущества

Преимущества жидкой штамповки

Достаточно своеобразной технологией считается жидкая штамповка алюминия — методика, сочетающая сразу две технологии: штамповки и литья. Ее отличие в том, что металл поступает в матрицу в жидком, то есть в расплавленном виде. Затем к работе подключается пуансон, выдавливающий материал и придающий ему необходимую форму.

Этот способ используется не так часто и в специфических целях: для изготовления тонкостенных корпусов техники. При этом он считается одним из самых прогрессивных, так как произведенные детали имеют четкие контуры, ровную поверхность без шероховатостей и других дефектов, а структура металла не страдает в процессе жесткой деформации.

ЖИДКАЯ ШТАМПОВКА

Жидкой штамповкой называют технологический процесс получения заготовок деталей, при котором кристаллизация жидкого металла, залитого в полость инструмента, происходит под высоким давлением. Это обеспечивает повышение коэффициента теплоотдачи и, следовательно, скорости охлаждения, поэтому структура металла получается более мелкозернистой, чем в отливках. Кристаллизация под давлением и деформирование предотвращают образование усадочных раковин и газовой пористости (так как растворимость водорода растет с повышением давления). В соответствии с этим получают повышенные механические свойства поковок. Наличие высоких давлений улучшает заполнение полостей штампов и качество поверхности. Используют разные схемы технологического процесса штамповки. По основной схеме металл заливают в полость штампа 2 (рис. 3.45, а), соответствующую форме поковки, сжимают пуансоном 1 и производят, таким образом, кристаллизацию под давлением (рис. 3.45, б). Вторая схема предусматривает частичное затвердевание металла под давлением в полости, отличной от окончательной формы поковки; затем следует деформация в полужидком состоянии до получения окончательных размеров поковки. В третьем случае после полной кристаллизации давлением следует деформация в твердом состоянии для получения окончательных размеров поковки. Эту схему надо отличать от встречающегося на производстве процесса горячей штамповки заготовки — отливки, кристаллизация которой происходила не под высоким давлением.

Рис. 3.45. Стадии процесса жидкой штамповки

Выплавка и дозированная заливка металлав полость штампа — первая стадия технологического процесса при всех схемах технологического процесса жидкой штамповки.

Выплавку металла могут производить или в объеме, необходимом для получения одной поковки, или в плавильном агрегате большего объема (чем необходимо для штамповки одной поковки) с последующей дозировкой при заливке металла в штамп. Каждый из этих способов имеет свои преимущества и недостатки: в первом случае металл находится в расплавленном состоянии короткое время, что обеспечивает сохранение его химического состава, а плавильно-разливочные устройства с индукционным нагревом можно устанавливать на прессе непосредственно. В другом случае трудно поддерживать химический состав металла при длительной выдержке при температурах, выше температуры плавления; технически сложно дозировать жидкий металл на порции заданной массы. Однако необходимость плавления при первом способе каждой порции шихты с высокой скоростью (время расплавления 4 . 10 мин) для поддержания рабочего такта пресса требует индукционных нагревателей высокой мощности и большого расхода электроэнергии.

Для сталей считают предпочтительной выплывку в плавильно-разливных устройствах; для цветных металлов плавление и поддержание температуры расплавленного металла можно осуществлять в печах с большей емкостью.

При заливке очень важно поддерживать оптимальную температуру металла, достаточную для обеспечения его жидкотекучести и заполнения полости штампа и, с другой стороны, исключающую перегрев металла. Последний повышает термические нагрузки на инструмент и ухудшает структуру металла поковки. Необходимо исключить при заливке попадание шлаковых включений в расплавленный металл. Скорость заливки металла в штамп не должна быть излишне высокой, чтобы не разрушать рабочую поверхность штампа и исключить сварку заготовки со штампом. Для этого же используют защитное покрытие полости штампа на основе извести, графита, каолина и др.

Штамповку жидкого металлавыполняют на специализированных гидравлических и фрикционных прессах. Специализация прессов обусловлена необходимостью большой скорости холостого хода; регулируемым, плавным нажимом на пуансон без резких скачков его перемещения; необходимостью наличия выталкивателей и возможности монтажа плавильно-заливочных устройств. При установке штампа на пресс должна обеспечиваться тепловая изоляция между ними.

Штампы для жидкой штамповки в большинстве случаев состоят из трех формообразующих частей: вкладыша 2 (рис. 3.45), выталкивателя 3 (образующих матрицу) и пуансона 1, устанавливаемого на подвижном ползуне пресса. Большое значение имеет правильный зазор между пуансоном и матрицей, поскольку при большом зазоре возможно заклинивание, а при малом — приварка пуансона к вкладышу — матрице или задиры на контактирующих поверхностях. Материал штампов — чаще легированные молибденом стали; для цветных металлов рекомендуют углеродистые стали с максимальным содержанием углерода около 0,5 %.

Процесс штамповки — кристаллизация и последующая деформация металла в штампе — определяет качество полученной поковки. При этом важный параметр процесса — время от конца заливки матрицы жидким металлом до начала кристаллизации под необходимым минимальным давлением, а решающее условие получения качественной поковки — это время должно быть больше (или равно) времени подхода пуансона от верхнего исходного положения до закрытия штампа и времени, затрачиваемого на развитие минимально необходимого давления в полости штампа. Кристаллизация под таким давлением — определяющий фактор для формирования мелкозернистой, плотной структуры металла и повышения его механических свойств. Величину давления рекомендуют применять в диапазоне 100 . 500 МПа, а время выдержки под давлением зависит от сложности и размеров поковки и составляет 2 . 10 с.

Область применения жидкой штамповкиопределяют прежде всего преимущества этого процесса перед литейной технологией и традиционными процессами горячей объемной штамповки. По сравнению с отливками поковки, изготовленные методом жидкой штамповки, обладают более высокими механическими и эксплуатационными характеристиками; более высокой точностью размеров, меньшим расходом металла (нет прибылей, литниковых систем и т.д.). В отличие от поковок, полученных традиционными способами горячей объемной штамповки, жидкой штамповкой изготовляют поковки как с толстыми, так и с тонкими стенками; без перемычек в отверстиях; с меньшим числом переходов; с меньшими затратами на механическую обработку и другими материально-энергетическими затратами.

Вместе с тем процесс жидкой штамповки требует больших затрат на инструмент, усугубляющихся его недостаточной стойкостью, особенно при штамповке стали. Так, число поковок, отштампованных на одном штампе из стали, составляет несколько сотен, а поковок из цветных металлов — несколько десятков тысяч.

Жидкой штамповкой производят для нужд машиностроения и приборостроения большое число разных по сложности поковок массой ориентировочно до 10 кг.

Способ жидкой штамповки деталей

Изобретение относится к литейному производству, в частности к получению деталей любой конфигурации методом жидкой штамповки. Сущность изобретения: способ включает заливку металла в полость матрицы, кристаллизацию металла под давлением, приложение повышенного давления на металл равное полной его кристаллизации до достижения пластической деформации заданной степени. Перед заливкой металла отдельные части полости матрицы перекрывают, а во время приложения повышенного давления и под его воздействием принудительно открывают эти части и заполняют частично закристаллизовавшимся металлом, а затем к этим частям также прикладывают повышенное давление. 2 ил., 1 табл.

Изобретение относится к литейному производству, в частности к получению деталей любой конструкции методом совмещения литья с кристаллизацией под давлением (ЛКД) и жидкой штамповки.

Известен способ жидкой штамповки, при котором расплав под давлением поршня подают в форму и выдерживают под давлением до полузатвердевшего состояния. Затем в полость подают пуансон под повышенным давлением и вытесняют часть металла в освободившийся при отходе поршня объем [1] Однако известный способ имеет следующие недостатки.

1. Порция расплавленного металла в рабочую зону штампа (формы) подается через специальную втулку методом выживания по аналогии литья под давлением, но со значительно меньшей скоростью. Это накладывает определенные ограничения на марки применяемых сплавов, которые должны обладать хорошей жидкотекучестью, узким интервалом кристаллизации, малым коэффициентом усадки во избежание горячих трещин при затвердевании в металлической форме. Такими свойствами обладают лишь малокомпонентные литейные, алюминиевые сплавы, которые по комплексу физико-механических свойств значительно уступают высокопрочным многокомпонентным литейным и деформируемым алюминиевым сплавам.

2. Кристаллизация заполненного металла в штамп происходит под давлением, равным усилию выжимания, которое не обеспечивает компенсацию усадочных процессов по всему объему заготовки. Дополнительное усилие, которое прикладывается к прессущим частям штампа для перемещения их на величину, компенсирующую усадку, ограничивается застойными зонами в закрытом штампе.

Известен способ жидкой штамповки деталей, выбранный в качестве прототипа. Этот способ включает заливку металла в матрицу, кристаллизацию металла под давлением, приложение повышенного давления ранее полного окончания кристаллизации металла до достижения состояния пластической деформации [2] Недостаток этого способа заключается в том, что при изготовлении деталей сложной конфигурации описанным способом невозможно достичь высоких механических свойств по всему сечению этих деталей, пластическая деформация осуществляется в локальных местах заготовки.

Техническая задача изобретения заключается в том, чтобы получить детали сложной формы (с тонкими ответвлениями, например, дисков автомобильных колес) с высокими механическими свойствами.

Поставленная техническая задача достигается тем, что способ жидкой штамповки деталей, включающий заливку металла в полость матрицы, кристаллизацию металла под давлением, приложение повышенного давления на металл ранее полной его кристаллизации до достижения пластической деформации заданной степени, предусматривает перекрытие перед заливкой отдельных частей полости матрицы, а во время приложения повышенного давления и под его воздействием принудительно открывают эти части и заполняют частично закристаллизовавшимся металлом, а затем к этим частям также прикладывают повышенное давление.

По сравнению с прототипом предложенный способ отличается наличием следующих операций: во время приложенного повышенного давления и под его воздействием производят открывание полости второго порядка матрицы; принудительное заполнение этой полости частично закристаллизовавшимся металлом из полости первого порядка матрицы.

Таким образом, заявляемый способ соответствует критерию изобретения «новизна».

Изобретательский уровень объясняется тем, что данный способ позволил разрешить техническое противоречие, возникающее между необходимостью повышения физико-механических свойств, получаемых методом ЛКД деталей сложной конфигурации, и ограниченными возможностями использования при этом высокопрочных многокомпонентных алюминиевых сплавов.

На фиг.1 и 2 изображена установка, реализующая предлагаемый способ.

Установка для жидкой штамповки деталей включает верхний пуансон 1, верхний средний пуансон 2, разъемную матрицу 3, нижний средний пуансон 4, нижний пуансон 5, стол 6, мерную порцию 7 металла, полости А и Б первого порядка, полость В второго порядка.

На фиг.2 цифрами I-III обозначены части заготовок, из которых вырезались образцы для исследования механических свойств.

Способ жидкой штамповки деталей осуществляется следующим образом.

Пуансоны 1 и 2 устанавливают в верхнее положение. К пуансонам 5 и 4 приложены давления Р3 и Р2 соответственно, они находятся в рабочем положении. При таком положении пуансонов образованы полости А и Б первого порядка и полость В второго порядка. Полость B второго порядка перекрыта, чтобы в нее не попал жидкий металл во время заливки.

Мерную порцию 7 жидкого металла заливают в полость Б первого порядка матрицы. Пуансонам 1 и 2 прикладывают давление Р1. Происходит неполное формообразование детали, металл заполняет полость A первого порядка, но не попадает еще в полость В второго порядка. Под этим давлением выдерживают деталь в течение времени, достаточного для образования 75-85% твердой фазы металла в полости А и 50-60% в полости Б. Пуансоны 1 и 2 перемещаются за это время на величину, достаточную для компенсации усадочного процесса при затвердевании металла в полостях А и Б. Затем к пуансону 1 прикладывается увеличенное давление, под действием которого происходит дальнейшее перемещение пуансона 1 на величину h1-h2 (фиг.1 и 2). При этом пуансоны 5 и 4 принудительно перемещаются, открывая полость В второго порядка, которая заполняется металлом из полостей А и Б первого порядка.

Под этим давлением деталь выдерживают в течение времени, достаточного для образования 75-85% твердой фазы металла в полостях Б и В. Пуансоны 5 и 4 перемещаются за это время на величину, компенсирующую усадочные процессы при затвердевании. Затем к пуансонам 5 и 4 прикладывают увеличенное давление, под действием которого происходит дальнейшее перемещение пуансонов на величину h3, при этом пуансон 2 принудительно возвращается в исходное состояние. Одновременно с этим перемещением происходит окончательное затвердевание металла во всем объеме заготовки. Во всех частях детали происходит пластическая деформация 0,1.0,8.

Затем пуансоны 1 и 2 извлекают из матрицы 3. Матрица, состоящая из двух принудительно поднимающихся и раздвигающихся полуматриц, отделяет отштампованную деталь от пуансона 4, после чего она извлекается из зоны штампа.

Проведены исследования механических свойств образцов, вырезанных из различных частей заготовок (фиг.2) одной и той же детали, изготовленных из алюминиевых литейных и деформируемых сплавов разными способами: литье под низким давлением; литье с кристаллизацией под давлением; горячая объемная штамповка и способ жидкой штамповки, описанный в предлагаемом изобретении.

Замерялись следующие характеристики: в предел прочности, относительное удлинение образцов и НВ твердость по Бринелю. Из результатов замера, приведенных в таблице, видно все характеристики образцов, полученных предлагаемым способом выше.

СПОСОБ ЖИДКОЙ ШТАМПОВКИ ДЕТАЛЕЙ, включающий заливку металла в полость матрицы, кристаллизацию металла под давлением, приложение повышенного давления на металл ранее полной его кристаллизации до достижения пластической деформации заданной степени, отличающийся тем, что перед заливкой металла отдельные части полости матрицы перекрывают, а во время приложения повышенного давления и под его воздействием принудительно открывают эти части и заполняют частично закристаллизовавшимся металлом, а затем к этим частям прикладывают повышенное давление.

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Номер и год публикации бюллетеня: 15-2002

Технологии объемной штамповки с использованием жидкого металла и в твердожидком состоянии

Технология штамповки из жидкого металла

Как уже отмечалось, объемная штамповка — это процесс, заключающийся в обработке давлением холодного или нагретого металла, который в результате протекания пластической деформации приобретает заданную форму. Осуществление этого процесса требует мощного оборудования, и штампованную поковку таким способом можно получить только из сплава, имеющего достаточно высокую пластичность в твердом состоянии. Такой, например, сплав, как чугун, для штамповки нетехнологичен.

Штамповка из жидкого металла является прогрессивной технологией, позволяющей получать поковки с уменьшенными припусками на механическую обработку, выходом годного пресс-остатка по жидкому металлу до 95-98 %, высокими физико-механическими и эксплуатационными свойствами. Этот процесс занимает промежуточное положение между литьем под давлением и традиционной горячей объемной штамповкой и сочетает в себе преимущества как литейного производства (использование жидкого металла и заполнение им требуемой формы), так и штамповочного производства (применение высокого давления и специальных штампов). По сравнению с первым процессом штамповка из жидкого металла позволяет получать поковки сложного профиля почти без пор и раковин. Преимущество этой технологии перед традиционной объемной штамповкой заключено в снижении мощности применяемого оборудования и возможности получения сложных фасонных поковок типа втулок, фланцев, крышек, шестерен и др., как круглых, так и прямоугольной формы, с хорошим качеством поверхности и точными геометрическими размерами, близкими по форме и размерам к готовым деталям.

При такой штамповке металл заливается в штамп в расплавленном состоянии, а формообразование (штамповка) детали начинается в момент полужидкого состояния металла и заканчивается в твердом состоянии. Это позволяет получать заготовки с высокой плотностью металла и повышенными механическими свойствами. В этом процессе применяют штампы с неразъемными и разъемными матрицами. При использовании штампов с неразъемными матрицами механическую обработку применяют, чтобы получить вертикальные размеры требуемой точности и уклонов. Штамповкой в разъемных матрицах изготовляют поковки без уклонов, которые по наружному диаметру можно не обрабатывать.

При рассмотрении процесса штамповки из жидкого металла, залитого в нижний ручей штампа, важным является установление времени начала его кристаллизации, продолжительность процесса кристаллизации при высоких давлениях, влияние давления на распределение температуры при кристаллизации и в процессе штамповки. Знание этих параметров позволяет определить как допустимое время между заполнением штампа жидким металлом и установлением необходимого давления, так и время, требуемое для кристаллизации металла заготовки.

Время начала кристаллизации зависит от вида штампуемого изделия, от геометрической формы штампа и от выбора технологических параметров. Верхний предел размеров штампованных изделий устанавливается на основе максимального усилия пресса и необходимого минимального давления. В начале процесса необходимо повысить температуру металла до температуры заливки для обеспечения его жидкотекучссти и лучшего заполнения штампа. Перегрев расплавленного металла выше температуры заливки нежелателен, так как это приводит к повышенным термическим перегрузкам на инструментальную оснастку и ухудшению структуры металла детали. Также необходимо обеспечить условия, исключающие попадание в расплавленный металл шлаковых включений. Повышение скорости заливки металла в штамп ухудшает условия его работы, разрушает рабочую поверхность, а в некоторых случаях приводит к сварке заготовки со штампом, что исключает последующее его использование. В связи с этим для процессов жидкой штамповки рекомендуют невысокие скорости заливки металла. На границе раздела штамп — жидкий металл необходимо использовать разделительный слой (из извести, графита или каолина), обеспечивающий благоприятные условия работы штамповой оснастки. Оптимальными температурами заливки расплавленных металлов и сплавов в штампы жидкой штамповки являются: для сталей 1 580 °С, для медных сплавов 1 050 °С и для алюминиевых сплавов 700 °С. Применение различных материалов по-разному влияет на термические напряжения в штампах, что сказывается на их работоспособности. Давление является решающим фактором в улучшении структуры и повышении механических свойств штампованных деталей. Для получения деталей методом жидкой штамповки без пор и раковин рекомендуют применять давление в диапазоне 100-500 МПа. Например, для алюминиевых сплавов максимальное прилагаемое давление достигает 350 МПа. Установлено, что в зависимости от сложности и размеров штампуемых деталей выдержка металла под давлением изменяется в пределах 2-10 с.

Особенность процесса штамповки из жидкого металла заключается в том, что расплав подается не в специальную камеру сжатия, как это делается при литье под давлением, а непосредственно в полость штампа. После этого под действием пуансона, гидравлического, пневматического или винтового пресса металл деформируется так же, как и при горячей объемной штамповке в закрытом штампе, и выдерживается под давлением до полной кристаллизации. Применение давления при формообразовании позволяет устранить основной недостаток, который встречается при литье под давлением, — пустоты, газовые и усадочные раковины. Поковки простой конфигурации без боковых выступов и впадин получают в штампах с неразъемными матрицами, а заготовки сложной конфигурации с отростками и поднутрениями — в штампах с разъемными матрицами.

Как показано на рис. 11.29, при штамповке расплав заливается в специальную полость, выполненную в матрице 1. Затем пуансон 2 опускается, и под его давлением жидкий металл 3 поднимается и заполняет полость, образующуюся между матрицей и пуансоном. Эта полость имеет конфигурацию будущей отливки; матрица оформляет наружную ее поверхность, а пуансон — внутреннюю. Излишек металла вытесняется в специальную полость. Когда металл затвердевает, форму раскрывают и отливку 4 удаляют из матрицы. Такой способ отличается большой производительностью, дает возможность получать плотные и довольно тонкостенные отливки. Для его осуществления не требуется мощного оборудования, как при штамповке твердого металла. Правда, этот способ ограничивается определенной конфигурацией изделий, которая не должна быть очень сложной.

При штамповке крупных партий поковок для каждого типа поковок изготавливают свой штамп, а при штамповке в условиях мелко- и среднесерийного производства выгоднее применять групповой метод, при котором для производства определенной поковки данной группы используют универсальный групповой блок и изготовляют только сменный формообразующий инструмент (вставки, вкладыши).

Рис. 11.29. Схема штамповки жидкого металла: а — перед штамповкой:

  • 1 — матрица; 2 — пуансон; 3 — жидкий металл; б — завершение штамповки:
  • 4 отливка; 5 — излишек металла

Технология штамповки поковок из жидкого металла позволяет использовать отходы от литья, штамповки (облой и перемычки), механической обработки (стружка) как черных, так и цветных металлов, и значительно повысить коэффициент использования металла. Низкий удельный расход шихтовых материалов и соответственно низкий расход жидкого металла определяют снижение топливно-энергетических затрат в 1,5-2 раза.

Штамповать в жидком состоянии можно как цветные, так и черные сплавы. При этом металл находится в состоянии трехосного неравномерного сжатия, растягивающие напряжения отсутствуют, что дает возможность штамповать малопластичные и литейные сплавы, которые при обычных процессах трудно или вовсе не деформируются.

Недостатками штамповки из жидкого металла являются следующие:

  • • производительность штамповки ниже, чем при горячей объемной штамповке, ввиду необходимости выдержки жидкого металла в штампе под давлением;
  • • длительное взаимодействие жидкого металла со стенками штампа ведет к появлению на них разгарных трещин, в результате чего стойкость штампов оказывается ниже, чем при горячей объемной штамповке;
  • • возможно возникновение значительной ликвации в поковке при вытеснении еще не затвердевшего металла.

Литье алюминия

В производственных цехах литье алюминия выполняется с помощью автоматических установок.

Машины разных моделей в большом ассортименте представлены в компании «ИМСТЕК».

Все оборудование от лучших Китайских и Тайваньских производителей. Отличается высокой степенью автоматизации и безупречным качеством.

Рис.1. Машина для литья алюминия DC-250V4N

Характеристики алюминия

Алюминий — пластичный легкий металл серебристого цвета. Отлично гнется, хорошо поддается штамповке, литью, металлообработке.

На воздухе быстро окисляется, образуя тонкую оксидную пленку, защищающую от коррозии.

Характерные свойства:
• малая плотность;
• высокая электропроводность;
• невысокая температура плавления, около 660°С, с точкой кипения 2500°С.

В расплавленном состоянии металл хорошо растекается, заполняя пресс-формы для литья алюминия.

Высокая пластичность позволяет раскатывать его в тончайшую фольгу, используемую для создания упаковок.

Отличные технические и эксплуатационные качества позволяют использовать алюминий в транспортном машиностроении, строительстве, электротехнике, производстве потребительских товаров разного назначения.

Технологии домашнего литья алюминия, материалы и оборудование

Благодаря относительно невысокой температуре плавления, литые детали из алюминия можно изготовить кустарным способом.

Изготовление изделий выполняется в следующем порядке:
1. Расплавленный воск или парафин заливается в емкость, имеющую параметры будущей детали и оставляется до полного затвердевания.
2. Из отлитой заготовки вырезается макет будущей детали, помещается в подготовленную опалубку и закрепляется.
3. Смесь из гипса или цемента, песка мелкой фракции и воды перемешивается до сметанообразного состояния и выливается в опалубку. При этом заготовка должна полностью накрываться раствором.
4. Форму с раствором необходимо слегка потрясти, для удаления пузырьков воздуха.
5. После набора прочности из гипсовой формы вытапливается парафин, гипс полностью высушивается.
6. Сырье плавится в специальных печах или при помощи горелок.
7. Сверху расплава снимается слой окисла, раскаленный металл заливается в готовые формы.

Для работы понадобятся:
• алюминиевый лом;
• гипсовый или цементный раствор;
• воск, пенопласт или парафин;
• емкость из чугуна или нержавеющей стали;
• печь для разогрева металла бензиновая или газовая горелка;

Чтобы подготовить необходимое для заливки количество сырья, нужно определить вес и массу будущего изделия с помощью металлического калькулятора.

Самодельные печи и способы расплавления алюминия

На производственных предприятиях и литейных цехах металл плавится в тигельных индукционных печах.

Плавка кустарным способом возможна в самодельных печах или устройствах, работающих от бензиновых или газовых горелок.

В муфельной печи имеется специальная камера, изолирующая расплавляемую заготовку от контакта с углем или продуктами горения.

Нагревательная камера может быть изготовлена из шамотного огнестойкого кирпича, глины или теплоизоляционных панелей ШПГТ-450. Для уменьшения тепловых потерь муфельную печь снаружи можно изолировать минеральной базальтовой ватой.

Нагрев в такой печи происходит от угля, газа или электричества.

Электрические печи самые популярные и эффективные. В них быстро достигается необходимая температура. Они не занимают много места и отличаются чистотой производства.

Рис.2 Самодельная электрическая муфельная печь

Принцип действия угольной печи:
1. В камеру, выложенную из шамотного кирпича, устанавливается емкость для плавки сырья.
2. Вокруг укладывается и поджигается уголь.
3. Снизу подается воздух, поддерживающий горение.
4. Дым от горения угля удаляется в оставленное в крышке отверстие или трубу.

Рис.3. Схема печи кустарного изготовления: 1. Крышка с проемом для выхода топочных газов; 2. Стенки печи из шамотного кирпича, глины или плит; 3. Тигель для алюминия; 4. Чугунная решетка; 5. Дверка для удаления золы; 6. Камера зольная; 7. Подача воздуха; 8. Угольная камера.

Небольшие заготовки, весом до 150 граммов, можно плавить при помощи газовых или бензиновых горелок, приспособив для этого разные по размеру жестяные банки.

Рис.4. Устройство для плавки с газовой горелкой

Способы создания форм для литья алюминия

Для производства изделий методом плавки нужны соответствующие пресс-формы для литья алюминия.

Они могут изготавливаться из гипса, цемента, смеси песка и жидкого стекла.

1. Открытый способ литья

Простые изделия изготавливают в открытых формах. Для этого используются приспособленные емкости в виде жестяных банок, коробок, сковородок, самодельные формы из гипса.

2. Закрытая форма

Сложные детали и узлы создаются в закрытых разъемных пресс-формах для литья алюминия. Они обычно состоят из основной детали и двух или нескольких боковых, или верхних частей. В верхней части формы делаются воронкообразные проемы для подачи металла.

Материалы для литых форм

Мастера, занимающиеся литьем алюминия, чаще всего используют гипсовый или цементный раствор для изготовления форм.

Макет детали изготавливается из воска, пенопласта или парафина.

Восковый шаблон устанавливается в коробку или ящик, выступающий в роли опалубки, фиксируется и заливается раствором из гипса.

Для изготовления формы лучше подойдет белый гипс, марки Г-7.

В процессе схватывания и сушки формы парафин или воск расплавляется и выливается. В образовавшиеся полости заливается горячий алюминий.

Если в качестве макета используется пенопласт, раскаленный алюминий заливается по пенопласту, расплавляя и вытесняя его из формы.

Типичные ошибки и советы по правильному литью

Литье из алюминия — непростой процесс, требующий выполнения сложных операций. Если вы решили, что отливка изделий вам под силу — смело беритесь за дело.

Важно трезво оценить свои возможности, запастись необходимыми материалами и прислушаться к советам профессионалов:
1. Важно разогревать расплав до нужной температуры, чтобы обеспечить хорошее растекания по форме и предотвратить образование пустот. Слишком высокая температура расплава также может повлиять на прочность готовых изделий.
2. В качестве сырья лучше использовать мягкие виды алюминиевых изделий. В твердых образцах может содержаться большой процент оксидов.
3. При заливке металла в формы из гипса, необходимо дождаться полного их высыхания. В противном случае, испаряемая влага может создавать на готовых деталях из алюминия полости и поры.
4. Не допускается закалка раскаленных отливок в холодной воде, так как при резком остывании может возникнуть внутреннее напряжение и усадка металла.
5. При устройстве печи с электрическими нагревательными элементами, необходимо предусмотреть заземление конструкции.

При выполнении последовательности и технологии работ, литье — доступный процесс создания изделий из алюминия в кустарных условиях.